Energieausweis für Nicht-Wohngebäude **ecotech**

gemäß Önorm H 5055 und Richtlinie 2002/91/EG

OIB Oesterreichisches Institut für Bautechnik

Niederösterreich

GEBÄUDE			
Gebäudeart	Bürogebäude	Erbaut	1993
Gebäudezone		Katastralgemeinde	Willendorf
Straße	Puchberger Straße 36	KG-Nummer	23354
PLZ/Ort	2732 Willendorf	Einlagezahl	1188
Eigentümer	Gemeinde Willendorf 2732 Willendorf, Puchberger Straße 36	Grundstücksnummer	5 und .22

SPEZIFISCH	IER HEIZWÄRMEBEDARF BEI 3400 HEIZGRADTAGEN (REFERENZKLIMA)
A ++	
A +	
A	
В	
С	
D	126 kWh/m ² a
Е	
F	
G	

ERSTELLT			
ErstellerIn	DI Christian Kadletz	Organisation	Baumeister Ing. Hermann Halbweis
ErstellerIn-Nr.		Ausstellungsdatum	30.08.2012
GWR-Zahl		Gültigkeitsdatum	30.08.2022
Geschäftszah		Unterschrift	

Dieser Energieausweis entspricht den Vorgaben der Richtlinie 6 "Energieeinsparung und Wärmeschutz" des Österreichischen Institutes für Bautechnik in Umsetzung der Richtlinie 2002/91/EG über die Gesamtenergieeffizienz von Gebäuden und des Energieausweis-Vorlage-Gesetzes (EAVG).

EA-01-2007-SW-a EA-NWG 25.04.2007

Energieausweis für Nicht-Wohngebäude ecotech

gemäß Önorm H 5055 und Richtlinie 2002/91/EG

OIB

Niederösterreich

GEBÄUDEDATEN

Brutto-Grundfläche 162,48 m² konditioniertes Bruttovolumen 519,9 m³ charakteristische Länge (Ic) 1,50 m Kompaktheit (A/V) 0,67 1/m mittlerer U-Wert (Um) 0,68 W/m2K **LEK-Wert** 59

KLIMADATEN

N/SO Klimaregion Seehöhe 400 m Heizgradtage 3561 Kd Heiztage 288 d Norm-Außentemperatur -13,3 °C mittlere Innentemperatur 20 °C

WÄRME- UND ENERGIEBEDARF

	Referenzklima		Standortklima		Anforderungen
	zonenbezogen	spezifisch	zonenbezogen	spezifisch	
HWB*	20.520 kWh/a	39,47 kWh/m³a			
HWB	19.265 kWh/a	118,57 kWh/m²a	20.746 kWh/a	127,68 kWh/m²a	
WWWB			765 kWh/a	4,71 kWh/m²a	
NERLT-h					
KB*	1 kWh/a	0,00 kWh/m³a			
KB			957 kWh/a	5,89 kWh/m²a	
NERLT-k					
NERLT-d					
NE					
HTEB-RH			6.536 kWh/a	40,22 kWh/m²a	
HTEB-WW			1.699 kWh/a	10,45 kWh/m²a	
HTEB			9.431 kWh/a	58,04 kWh/m²a	
KTEB					
HEB			30.942 kWh/a	190,43 kWh/m²a	
KEB					
RLTEB					
BelEB			5.232 kWh/a	32,20 kWh/m²a	
EEB			36.174 kWh/a	222,63 kWh/m²a	
PEB					
CO2					

ERLÄUTERUNGEN

Endenergiebedarf (EEB):

Energiemenge die dem Energiesystem des Gebäudes für Heizung und Warmwasserversorgung inklusive notwendiger Energiemengen für die Hilfsbetriebe bei einer typischen Standardnutzung zugeführt werden muss.

Die Energiekennzahlen dieses Energieausweises dienen ausschließlich der Information. Aufgrund der idealisierten Eingangsparameter können bei tatsächlicher Nutzung erhebliche Abweichungen auftreten. Insbesondere Nutzungseinheiten unterschiedlicher Lage können aus Gründen der Geometrie und der Lage hinsichtlich ihrer Energiekennzahlen von den hier angegebenen abweichen.

EA-01-2007-SW-a EA-NWG

Anhang zum Energieausweis gemäß OIB-Richtlinie 6 (8.1.2)

Verwendete Hilfsmittel und ÖNORMen:

Berechnungsverfahren: Monatsbilanzverfahren Klimadaten nach ÖNORM B 8110-5 Heizwärme- und Kühlbedarf nach ÖNORM B 8110-6 Transmissionsleitwert: Vereinfachte Berechnung nach 5.3 Lüftungswärmeverlust: Für NWG nach 7.4 Glasanteil gem. ÖNORM EN ISO 10077-1 Verschattungsfaktor vereinfacht nach 8.3.1.2.2 Wirksame Wärmekapazität: Vereinfachter Ansatz nach 9.1.2 für … Bauweise Heiztechnik-Energiebedarf nach ÖNORM H 5056: Details siehe Angabeblatt Raumlufttechnik-Energiebedarf nach ÖNORM H 5057: Details siehe Angabeblatt Kühltechnik-Energiebedarf nach ÖNORM H 5058: Details siehe Angabeblatt Beleuchtungsenergiebedarf nach ÖNORM H 5059: Details siehe Angabeblatt

Der Energieausweis wurde erstellt mit ECOTECH Software, Version 3.1

Ermittlung der Eingabedaten:

Geometrische Daten: Oberhöflein 1992 Auswechlungsplan von Baumeister Hans Praunsdorfer,

Kommentare:

Es wurde das gesamte Gemeindeamt (Nur Erdgeschoss ohne Nebenräume) als vollbeheiztes Gebäude angenommen, ausgenommen Keller.Das Obergeschoss (Ordination) wird ebenfalls als vollbeheizter Gebäudeteil angenommen.

Die Bauteilaufbauten wurden lt. Angaben des/der Bauherren bzw. der Einreichplanersteller erstellt und nicht bauphysikalisch überprüft. Wo keine Angaben über Wand- und Deckenaufbauten aus Pläne bzw. vom Eigentümer erfolgten, werden Bauteilschichten nach Alter und Augenschein des Gebäudes angenommen. Auf bauliche Eingriffe wurde verzichtet.

Die Ergebnisse der Energieberechnung bezgl. Energieverbrauch, etc. sind als Anhaltswerte zu verstehen (abhängig von Benutzerverhalten).

Bei Sanierungsmaßnahmen übermitteln Sie den Energieausweis unbedingt allen am Bau beteiligten Firmen damit die Dämmwerte, Luftdichtheit, etc. eingehalten werden.

Verminderungen der Dämmstoffstärken bzw. Verglasungen führen zu einer Verschlechterung der Enrgiekennzahl.

Bei Inanspruchnahme von Förderungen kann dies eventuell zu deren Verlust führen! Bei Förderungen werden die Werte der Berechnung im Auftrag der Landesregierung überprüft! Erst nach Überprüfung des Energieausweises steht die entgültige Förderhöhe fest!

Zertifizierte Ökoprodukte für die Förderung finden Sie aufgelistet unter www.ibo.at, www.natureplus.at, www.umweltzeichen. at.

Weitere Info zur neuen Förderung finden Sie auch unter www.noe.gv.at und unter www.öbox.a/noe.

Heizung

Wärmeabgabe

Regelung Abgabesystem Verbrauchsermittlung Heizkörper-Regulierventile, von Hand betätigt Radiatoren, Einzelraumheizer (70/55 °C) Individuelle Verbrauchsermittlung und Heizkostenabrechnung (Fixwert)

Wärmeverteilung

Lage der Verteilleitungen 75% beheizt Lage der Steigleitungen 75% beheizt Lage der Anbindeleitungen 100% beheizt Dämmung der Verteilleitungen 1/3 Durchmesser Dämmung der Steigleitungen 1/3 Durchmesser Dämmung der Anbindeleitungen 1/3 Durchmesser Armaturen der Verteilleitungen Armaturen gedämmt Armaturen der Steigleitungen Armaturen gedämmt Armaturen der Anbindeleitungen Armaturen gedämmt Länge der Verteilleitungen [m] 13,74

(Default) Länge der Steigleitungen [m] 13,00 (Default) Länge der Anbindeleitungen [m] 90,99 (Default)

Wärmespeicherung

Baujahr des Speichers Art des Speichers **Basisanschluss** E-Patrone **HeizregisterSolar**

Speicher im beheizten Bereich

Speichervolumen V_{H,ws} [I]

Nein

Anschlüsse gedämmt

Anschluß nicht vorhanden

Anschluß nicht vorhanden

Lastausgleichsspeicher Heizkessel

ab 1994

285,7 (Default) Verlust q_{b,ws} [kWh/d] 2,90 (Default)

Wärmebereitstellung (Zentral)

Bereitstellung Heizkessel oder Therme

Baujahr des Kessels nach 1994 **Brennstoff** Heizöl leicht

Art des Kessels Öl-BW-Kessel nach 1994 **Betriebsweise** Konstante Betriebsweise Einbringung Keine Fördereinrichtung

Modulierend Nein **Kessel In Beheizt** Nein Kessel Gebläse Nein 11,4

Nennleistung P_{H,KN} [kW]
Wirkungsgrad bei Vollast η_{100%} [-]
Wirkungsgrad Vollast im Betrieb η_{be,100%} [-] (Default) 0,921 (Default) 0,901 (Default) Wirkungsgrad 30% Teillast η_{30%} [-] 0,981 (Default) Wirkungsgrad 30% im Betrieb $\eta_{be,30\%}$ [-] Betriebsbereitschaftsverlust $\mathbf{q}_{\mathrm{bb,Pb}}$ [kW/kW] 0,961 (Default) 0,0117 (Default)

Warmwasser

Wärmeabgabe

Individuelle Verbrauchsermittlung und -abrechnung (Fixwert) Verbrauchsermittlung Art der Armaturen Zweigriffarmaturen (Fixwert)

Wärmeverteilung

Lage der Verteilleitungen 75% beheizt Lage der Steigleitungen 75% beheizt Dämmung der Verteilleitungen 1/3 Durchmesser Dämmung der Steigleitungen 1/3 Durchmesser Armaturen der Verteilleitungen Armaturen gedämmt Armaturen der Steigleitungen Armaturen gedämmt

Zirkulation Nein Stichleitungen Stahl

Länge der Verteilleitungen [m] 8.69 (Default) (Default) Länge der Steigleitungen [m] 6,50 Länge der Stichleitungen [m] 7,80 (Default) Zirkulation Verteilleitungen [m] (Default) 0,00 Zirkulation Steigleitungen [m] 0,00 (Default)

Wärmespeicherung

Baujahr des Speichers ab 1994

Indirekt beheizter Speicher (Öl, Gas, Fest, FW) ab 1994 Art des Speichers

Basisanschluss Anschlüsse gedämmt E-Patrone Anschluß nicht vorhanden HeizregisterSolar Anschluß nicht vorhanden Nein

Speicher im beheizten Bereich

Speichervolumen V_{TW,WS} [I] 227,5 (Default) Verlust q_{b,ws} [kWh/d] (Default) 2,15 Mittl. Betriebstemperatur ⊕ _{TW.WS.m} [°C] 55,0 (Default)

Wärmebereitstellung (Zentral)

Bereitstellung Warmwasserbereitung mit Heizung kombiniert

Solaranlage

Keine Solaranlage vorhanden

RLT

Keine RLT-Anlage (Fensterlüftung)

Kühlung

Kein Kühlsystem vorhanden

Blatt 1

Energiekennzahlen

Projekt: Gemeindeamt Willendorf

HWB Referenzklima	118,57	kWh/m²a	
	,		
HWB Standort	127,68	kWh/m²a	
BGF (beheizt)	162,48	m²	
Oberfläche (A)	347,00	m²	
Bruttorauminhalt (V)	519,95	m³	
A/V	0,67	1/m	
OI3 TGH-IC	45,83	-	

Optionen Heizwärmebedarf gemäß OIB-Richtline 6

Projekt: **Gemeindeamt Willendorf** Datum: 30. August 2012 Blatt 2

	Allger	neine Einstellungen		
Einreichung für	☐ Neubau	☐ Sanierung	Bestand	
Bauweise	☐ leicht	☐ mittel	✓ schwer	sehr schwer
Wärmebrückenzuschlag	✓ vereinfacht 7 [W/K]	detailliert lt. Baukörpereingabe 14 [W/K]		
Verschattung	✓ vereinfacht	detailliert lt. Baukörpereingabe		
Erdverluste	✓ vereinfacht	☐ detailliert lt. EN ISO 13370		
		Lüftung		
Art der Lüftung	natürliche Lüftung			
	Transpar	ente Wärmedämmung		
Transparente Wärmedämmung	nicht berücksichtigt			

Optionen Heizwärmebedarf gemäß OIB-Richtline 6

Projekt: **Gemeindeamt Willendorf** Datum: 30. August 2012 Blatt 3

Gebäudetyp / Innere Gewinne

Nutzungsprofil	Bürogebäude		
Nutzungstage Jänner	d_Nutz,1 [d]	23	(Lt. ÖNORM B 8110-5)
Nutzungstage Februar	d_Nutz,2 [d]	20	(Lt. ÖNORM B 8110-5)
Nutzungstage März	d_Nutz,3 [d]	23	(Lt. ÖNORM B 8110-5)
Nutzungstage April	d_Nutz,4 [d]	22	(Lt. ÖNORM B 8110-5)
Nutzungstage Mai	d_Nutz,5 [d]	23	(Lt. ÖNORM B 8110-5)
Nutzungstage Juni	d_Nutz,6 [d]	22	(Lt. ÖNORM B 8110-5)
Nutzungstage Juli	d_Nutz,7 [d]	23	(Lt. ÖNORM B 8110-5)
Nutzungstage August	d_Nutz,8 [d]	23	(Lt. ÖNORM B 8110-5)
Nutzungstage September	d_Nutz,9 [d]	22	(Lt. ÖNORM B 8110-5)
Nutzungstage Oktober	d_Nutz,10 [d]	23	(Lt. ÖNORM B 8110-5)
Nutzungstage November	d_Nutz,11 [d]	22	(Lt. ÖNORM B 8110-5)
Nutzungstage Dezember	d_Nutz,12 [d]	23	(Lt. ÖNORM B 8110-5)
Nutzungstage pro Jahr	d_Nutz,a [d]	269	(Lt. ÖNORM B 8110-5)
Tägliche Nutzungszeit	t_Nutz,d [h]	12	(Lt. ÖNORM B 8110-5)
Nutzungsstunden zur Tageszeit pro Jahr	t_Tag,a [h]	2970	(Lt. ÖNORM B 8110-5)
Nutzungsstunden zur Nachtzeit pro Jahr	t_Nacht,a [h]	258	(Lt. ÖNORM B 8110-5)
Tägliche Betriebszeit RLT-Anlage	t_RLT,d [h]	14,0	(Lt. ÖNORM B 8110-5)
Betriebstage RLT-Anlage pro Jahr	d_RLT,a [d]	269	(Lt. ÖNORM B 8110-5)
Tägliche Betriebszeit Heizung	t_h,d [h]	14	(Lt. ÖNORM B 8110-5)
Betriebstage Heizung pro Jahr	d_h,a [d]	269	(Lt. ÖNORM B 8110-5)
Tägliche Betriebszeit Kühlung	t_c,d [h]	12	(Lt. ÖNORM B 8110-5)
Betriebstage Kühlung pro Jahr	d_c,a [d]	269	(Lt. ÖNORM B 8110-5)
Innentemperatur Heizfall	theta_ih [°C]	20	(Lt. ÖNORM B 8110-5)
Innentemperatur Kühlfall	theta_ic [°C]	26	(Lt. ÖNORM B 8110-5)
Temperatur unkonditionierter Raum	theta_iu [°C]	13	(Lt. ÖNORM B 8110-5)
Feuchteanforderung	X [-]	mit Toleranz	(Lt. ÖNORM B 8110-5)
Luftwechselrate RLT	n_L,RLT [1/h]	2,00	(Lt. ÖNORM B 8110-5)
Luftwechselrate Fensterlüftung	n_L,FL [1/h]	1,20	(Lt. ÖNORM B 8110-5)
Luftwechselrate Nachtlüftung	n_L,NL [1/h]	1,50	(Lt. ÖNORM B 8110-5)
Beleuchtungsstärke	E_m [lux]	380	(Lt. ÖNORM B 8110-5) (Lt. ÖNORM B 8110-5)
Innere Gewinne Heizfall (bezogen auf	q_i,h,n [W/m²]	3,75	(Lt. ONORW B 6110-5)
Bezugsfläche BF) Innere Gewinne Kühlfall (bezogen auf	q_i,c,n [W/m²]	7,50	(Lt. ÖNORM B 8110-5)
Bezugsfläche BF)	q_i,c,ii [vv/iii-]	1,30	(C. UNURIVI D 0110-3)
Tägl. Warmwasser-Wärmebedarf (bezogen auf	wwwb [Wh/(m²-d)]	17.5	(Lt. ÖNORM B 8110-5)
Bezugsfläche BF)	WWW [WIII/(III-IU)]	17,5	(Lt. 01401(WI D 0110-3)
Dozuganicolic Di)			

Optionen Heizwärmebedarf gemäß OIB-Richtline 6

Projekt: **Gemeindeamt Willendorf** Datum: 30. August 2012 Blatt 4

Beleuchtungsenergiebedarf Nichtwohngebäude

Ermittlung LENI-Wert Benchmark-Wert nach ÖNORM H 5059 Tabelle 6

Benchmark-Wert [kWh/m²] 32,2

Flächenheizung

Flächenheizung nicht berücksichtigt

Optionen Kühlbedarf

Bewegliche keine Verschattung

Sonnenschutzeinrichtung

Steuerung Sonnenschutzeinrichtung manuell/zeitgesteuert

Oberfläche Gebäude weiße Oberfläche

Blatt 5

OI3-Index

Projekt: Gemeindeamt Willendorf

		Fläche	Wärmed. koeffiz	PEI	GWP	AP
		A [m²]	U [W/m²K]	[MJ]	[kg CO2]	[kg SO2]
AW 0,43m U=0,40	Außenwand	61,01	0,40	54.848,1	4.169,8	12,9
AW erdanliegend 0,41m U=0,44	erdanliegende Wand	22,20	0,44	34.798,6	1.790,9	8,6
IW 0,33m U=0,51	Innenwand	50,28	0,51	34.285,0	2.539,4	8,2
IW 0,32m U=2,47	Innenwand	15,87	2,47	14.033,8	1.813,3	6,2
FB 0,25m U=0,91	erdanliegender Fußboden	162,48	0,91	178.341,9	9.604,4	50,3
DA 0,35m U=0,95	Dach ohne Hinterlüftung	16,43	0,95	15.251,7	1.851,0	6,2
DE Trenndecke 0,35m U=0,85	Trenndecke	146,06	0,85	135.624,1	16.459,9	54,9
AF 1,37/1,34m U=1,76		3,67	1,76	1.978,9	-59,9	3,2
AF 1,07/1,34m U=1,79		2,87	1,79	1.488,6	-38,9	2,3
AT 1,97/2,25m U=1,66		4,43	1,66	2.739,6	-120,8	4,9
AF 1,10/1,20m U=1,98		2,64	1,98	5.571,3	276,3	1,8
AF 1,10/0,75m U=2,01		1,65	2,01	4.046,5	201,3	1,3
T 0,85/2,04m U=2,84		3,47	2,84	4.663,1	-14,3	1,1
Summe		493,06		487.671,1	38.472,6	162,0
PEI(Primärenergiegehalt nicht e	,			[MJ/m² l Punkte	-	48,91
GWP (Global Warming Potentia	1)			[kg CO2 Punkte	/m² KOF]	78,03 64,01
AP (Versäuerung)				[kg SO2 Punkte	/m² KOF]	0,33 47,40
OI3-TGH	I/3.AP)				/m² KOF]	
Ol3-TGH Ol3-TGH=(1/3.PEI + 1/3.GWP + 1 Ol3-Ic (Ökoindikator)	I/3.AP)			Punkte	/m² KOF]	47,40
Ol3-TGH Ol3-TGH=(1/3.PEI + 1/3.GWP + 1 Ol3-Ic (Ökoindikator) Ol3-Ic= 3 * Ol3-TGH / (2+Ic) Ol3-TGHBGF	·			Punkte Punkte	/m² KOF]	47,40 53,44 45,83
AP (Versäuerung) OI3-TGH OI3-TGH=(1/3.PEI + 1/3.GWP + 1 OI3-Ic (Ökoindikator) OI3-Ic= 3 * OI3-TGH / (2+Ic) OI3-TGHBGF OI3-TGHBGF= OI3-TGH * KOF /	·			Punkte Punkte Punkte	/m² KOF]	47,40 53,44
OI3-TGH OI3-TGH=(1/3.PEI + 1/3.GWP + 1 OI3-Ic (Ökoindikator) OI3-Ic= 3 * OI3-TGH / (2+Ic) OI3-TGHBGF OI3-TGHBGF= OI3-TGH * KOF /	·			Punkte Punkte Punkte Punkte	/m² KOF]	47,40 53,44 45,83 162,17

Blatt 6

OI3-Index

Projekt: Gemeindeamt Willendorf

	Schichtbezeichnung	Lambda		im Bauteil
	Ol3-Bezeichnung	[W/mK]	[kg/m³]	
)	Dämmputz Perlite, Polystyrol bis 450 kg/m³ zugeordnet: Dämmputz Perlite	0,160	500	AW 0,43m U=0,40
)	hochporosierter Hohlziegel mit Dämmmörtel	0,250	800	AW 0,43m U=0,40
	zugeordnet: Ziegel - Hochlochziegel porosiert			AW erdanliegend 0,41m U=0,44
	<=800kg/m³			IW 0,33m U=0,51
)	Kalk - Zementputz	1,000	1.800	AW 0,43m U=0,40
	zugeordnet: Kalk-Zementputz			AW erdanliegend 0,41m U=0,44
				IW 0,33m U=0,51
				IW 0,32m U=2,47
				DA 0,35m U=0,95
				DE Trenndecke 0,35m U=0,85
)	PE-Dichtbahnen, Bitumen-Flämmpappe	0,500	980	AW erdanliegend 0,41m U=0,44
	zugeordnet: Polyethylenbahn (hist.)			FB 0,25m U=0,91
				DA 0,35m U=0,95
				DE Trenndecke 0,35m U=0,85
	Stahlbeton	2,500	2.400	IW 0,32m U=2,47
	zugeordnet: Stahlbeton			DA 0,35m U=0,95
				DE Trenndecke 0,35m U=0,85
)	Zementestrich	1,700	2.000	FB 0,25m U=0,91
	zugeordnet: Zementestrich			DA 0,35m U=0,95
				DE Trenndecke 0,35m U=0,85
	EPS Polystyrol expandiert 15-18 kg/m³	0,038	20	FB 0,25m U=0,91
	zugeordnet: Polystyrol EPS 20			DA 0,35m U=0,95
				DE Trenndecke 0,35m U=0,85
)	Schütt- und Stampfbeton	1,330	2.000	FB 0,25m U=0,91
	zugeordnet: Magerbeton / Schütt- und Stampfbeton /			
	Aufbeton			
)	Zweifach-Wärmeschutzglas beschichtet 4-16-4 (Luft)	0,015	-	AF 1,37/1,34m U=1,76
	(Ug 1,5)			AF 1,07/1,34m U=1,79
	zugeordnet: 2-fach-Wärmeschutzglas beschichtet (4-16-			AT 1,97/2,25m U=1,66
	4 Luft)			AF 1,10/1,20m U=1,98
				AF 1,10/0,75m U=2,01
)	Weichholz (500 kg/m³, Lambda 0,13) 70 mm (Uf 1,6)	0,016	-	AF 1,37/1,34m U=1,76
	zugeordnet: Weichholz (500 kg/m³, 70mm Dick) (hist.)			AF 1,07/1,34m U=1,79
				AT 1,97/2,25m U=1,66
)	PVC-Hohlprofile 3 Kammern (Uf 2,0)	0,020	-	AF 1,10/1,20m U=1,98
	zugeordnet: Kunststoff-Hohlprofile (3 Kammern, d>=58mm) (hist.)			AF 1,10/0,75m U=2,01
)	Innentür Standard	0,160	700	IT 0,85/2,04m U=2,84
,	zugeordnet: Innentür gegen Pufferraum (Holz, lackiert)	-,.00		-,, J -, 5 .
)	Metallrahmen ohne thermischer Trennung (Uf 6,0)	0,060	-	IT 0,85/2,04m U=2,84
,	zugeordnet: Metallrahmen ALU (ohne thermischer	-,		, , ,-
	Trennung)			

¹⁾ Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog 2) Diese Baustoffe stammen aus dem ECOTECH-Baustoffkatalog.

Fenster und Türen im Baukörper - kompakt

Projekt: **Gemeindeamt Willendorf**Datum: 30. August 2012 Blatt 7

Fenster und Türen im Baukörper - kompakt

Ausricht. / Neig.	Anz	Bezeichnung	Breite [m]	Höhe [m]	Fläche [m²]	Ug [W/m²K]	Uf [W/m²K]	PSI [W/mK]	lg [m]	Uw [W/m²K]	AxU [W/K]	Ag [%]	g [-]	gw [-]	fs [-]	Awirk [m²]	Qs [kWh/a]	Ant.Qs [%]
		SÜDEN																
180/90	2	AF 1,37/1,34m U=1,76	1,37	1,34	3,67	1,50	1,60	0,040	9,86	1,76	6,46	53,81	0,61	0,54	0,75	0,80	686	27,9
180/90	2	AF 1,07/1,34m U=1,79	1,07	1,34	2,87	1,50	1,60	0,040	8,96	1,79	5,13	58,02	0,61	0,54	0,75	0,67	578	23,5
180/90	1	AT 1,97/2,25m U=1,66	1,97	2,25	4,43	1,50	1,60	0,040	10,36	1,66	7,36	37,06	0,61	0,54	0,75	0,66	571	23,2
SUM	5				10,97						18,95						1.835,38	74,62
		WESTEN																
270/90	2	AF 1,10/1,20m U=1,98	1,10	1,20	2,64	1,50	2,00	0,040	8,58	1,98	5,23	56,59	0,61	0,54	0,75	0,60	407	16,6
270/90	2	AF 1,10/0,75m U=2,01	1,10	0,75	1,65	1,50	2,00	0,040	5,24	2,01	3,32	48,24	0,61	0,54	0,75	0,32	217	8,8
SUM	4				4,29						8,55						624,38	25,38

Legende: Ausricht./Neig. = Ausrichtung / Neigung [°];Breite = Architekturlichte Breite, Höhe = Architekturlichte Höhe, Fläche = Gesamtfläche(außen), Ug = U-Wert des Glases, Uf = U-Wert des Rahmens, PSI = PSI-Wert, Ig = Länge d. Glasrandverbundes (pro Fenster), Uw = gesamter U-Wert des Fensters, AxU = Fläche mal U-Wert, Ag = Anteil Glasfläche, g = Gesamtenergiedurchlaßgrad(g-wert) It. Bauteil, gw = wirksamer Gesamtenergiedurchlaßgrad (g* 0.9 * 0.98), fs = Verschattungsfaktor (Winter/Sommer), aWirk = wirksame Fläche (Glasfläche*gw*fs), Qs = solare Wärmegewinne, Ant. Qs = Anteil an den gesamten solaren Wärmegewinnen, Qt = Transmissionswärmeverluste

Globalstrahlungssummen

Projekt: Gemeindeamt Willendorf

Beiblatt: 1 a

Datum: 30. August 2012 Blatt 8

Standardisierte Klimadaten: (Referenzklima)

Monatliche mittlere Außentemperaturen und monatliche mittlere Globalstrahlungssummen in kWh/m².

	°C	Hori-	Süd	Südost	Ost	Nordost	Nord	Nordwes	West	Südwest	Dauer
		zontal						t			[Tage]
Jänner	-1,5	107,24	142,67	115,02	70,24	49,61	47,20	49,61	70,24	115,02	31
Februar	0,7	185,11	216,58	178,16	115,70	81,43	75,89	81,43	115,70	178,16	28
März	4,8	300,24	282,20	247,68	187,63	126,11	102,10	126,11	187,63	247,68	31
April	9,6	406,12	284,26	278,17	243,65	182,74	142,13	182,74	243,65	278,17	30
Mai	14,2	552,10	314,68	329,87	317,45	252,58	198,76	252,58	317,45	329,87	31
Juni	17,3	558,79	279,40	310,14	318,53	266,83	212,36	266,83	318,53	310,14	30
Juli	19,1	578,09	294,84	330,95	335,30	273,13	213,88	273,13	335,30	330,95	31
August	18,6	498,60	314,10	322,85	294,16	215,64	159,55	215,64	294,16	322,85	31
September	15,0	356,29	295,70	269,89	217,33	155,88	128,27	155,88	217,33	269,89	30
Oktober	9,6	231,66	252,50	212,54	147,10	96,73	85,72	96,73	147,10	212,54	31
November	4,2	113,26	150,66	120,06	72,50	50,11	47,56	50,11	72,50	120,06	30
Dezember	0,2	80,39	123,80	96,88	52,67	35,78	34,56	35,78	52,67	96,88	31

Standortbezogene Klimadaten: (Willendorf)

Monatliche mittlere Außentemperaturen und monatliche mittlere Globalstrahlungssummen in kWh/m².

	°C	Hori- zontal	Süd	Südost	Ost	Nordost	Nord	Nordwes	West	Südwest	Dauer [Tage]
Jänner	-2,1	114,64	176,54	137,56	75,66	48,15	44,71	48,15	75,66	137,56	31
Februar	-0,1	192,19	242,16	196,04	121,08	76,88	69,19	76,88	121,08	196,04	28
März	3,9	306,37	294,12	257,35	193,02	125,61	101,10	125,61	193,02	257,35	31
April	8,5	420,37	294,26	290,06	252,22	189,17	147,13	189,17	252,22	290,06	30
Mai	13,1	549,04	301,97	323,93	318,44	252,56	197,65	252,56	318,44	323,93	31
Juni	16,2	554,06	271,49	310,27	315,81	265,95	210,54	265,95	315,81	310,27	30
Juli	18,1	575,14	293,32	327,83	333,58	270,32	212,80	270,32	333,58	327,83	31
August	17,6	501,32	310,82	325,86	300,79	225,59	165,43	225,59	300,79	325,86	31
September	14,3	367,44	304,98	279,26	227,82	161,68	132,28	161,68	227,82	279,26	30
Oktober	9,0	242,67	279,07	232,96	155,31	97,07	82,51	97,07	155,31	232,96	31
November	3,5	126,54	187,28	146,79	82,25	51,88	49,35	51,88	82,25	146,79	30
Dezember	-0,5	84,38	143,45	110,54	56,54	35,44	33,75	35,44	56,54	110,54	31

Blatt 9

Wärmebedarf Standort

Projekt: Gemeindeamt Willendorf

Monatliche Berechnung des Wärmebedarfs:

Standort	Willendorf	
Klimaregion	N/SO	
Seehöhe	400	m
LT	237,69	W/K
LV	51,15	W/K
Innentemperatur	20	°C
t_Heiz,d	14	h/d
q_ihn	3,75	W/m²
BGF	162,48	m²
С	15.598.37	Wh/K

Monate	Trans	Lüft	Wärme-	Innere	Solare	Gesamt-	Gewinn/	Nutz	
	verluste [kWh/a]	verluste [kWh/a]	verluste [kWh/a]	Gewinne [kWh/a]	Gewinne [kWh/a]	gewinne [kWh/a]	verlust Verhältn.	grad	Bedarf [kWh/a]
Jan	3.902	840	4.742	586	124	710	0,15	1,00	4.031,6
Feb	3.205	664	3.870	522	174	697	0,18	1,00	3.173,3
Mar	2.853	614	3.467	586	224	810	0,23	1,00	2.657,6
Apr	1.962	417	2.380	565	239	804	0,34	0,99	1.580,4
Mai	1.221	263	1.484	586	261	847	0,57	0,96	670,3
Jun	645	137	782	565	242	807	1,03	0,80	135,6
Jul	331	71	402	586	259	846	2,10	0,47	8,3
Aug	426	92	517	586	261	848	1,64	0,58	25,0
Sep	983	209	1.193	565	239	804	0,67	0,93	441,4
Okt	1.939	417	2.356	586	205	791	0,34	0,99	1.569,4
Nov	2.832	602	3.434	565	132	697	0,20	1,00	2.738,0
Dez	3.621	779	4.401	586	99	686	0,16	1,00	3.715,1
Summe	23.921	5.106	29.028	6.886	2.460	9.346	0,32	0,89	20.746

Monate	0e	Т	а
	[°C]	[h]	[-]
Jan	-2,07	54,00	4,38
Feb	-0,07	54,36	4,40
Mar	3,87	54,00	4,38
Apr	8,53	54,11	4,38
Mai	13,09	54,00	4,38
Jun	16,23	54,11	4,38
Jul	18,13	54,00	4,38
Aug	17,59	54,00	4,38
Sep	14,25	54,11	4,38
Okt	9,04	54,00	4,38
Nov	3,45	54,11	4,38
Dez	-0,48	54,00	4,38

Der flächenbezogene Heizwärmebedarf beträgt:

127,68 [kWh/(m²a)]

Blatt 10

Wärmebedarf Referenzstandort

Projekt: Gemeindeamt Willendorf

Monatliche Berechnung des Wärmebedarfs:

Standort	Referenzklima	
Klimaregion	N/SO	
Seehöhe	0	m
LT	237,69	W/K
LV	51,15	W/K
Innentemperatur	20	°C
t_Heiz,d	14	h/d
q_ihn	3,75	W/m²
BGF	162,48	m²
С	15.598.37	Wh/K

Monate	Trans	Lüft	Wärme-	Innere	Solare	Gesamt-	Gewinn/	Nutz	
	verluste [kWh/a]	verluste [kWh/a]	verluste [kWh/a]	Gewinne [kWh/a]	Gewinne [kWh/a]	gewinne [kWh/a]	verlust Verhältn.	grad	Bedarf [kWh/a]
lan								1.00	
Jan	3.807	819	4.627	586	103	689	0,15	1,00	3.938,1
Feb	3.078	638	3.716	522	158	680	0,18	1,00	3.036,0
Mar	2.686	578	3.264	586	215	802	0,25	1,00	2.464,0
Apr	1.776	378	2.154	565	231	796	0,37	0,99	1.364,9
Mai	1.026	221	1.246	586	268	854	0,69	0,93	451,5
Jun	457	97	554	565	247	812	1,47	0,64	37,8
Jul	156	33	189	586	261	847	4,48	0,22	0,2
Aug	255	55	309	586	262	848	2,74	0,36	2,4
Sep	851	181	1.031	565	231	796	0,77	0,90	313,2
Okt	1.832	394	2.226	586	187	774	0,35	0,99	1.457,7
Nov	2.711	577	3.287	565	108	673	0,20	1,00	2.615,2
Dez	3.503	754	4.257	586	87	673	0,16	1,00	3.584,2
Summe	22.138	4.725	26.863	6.886	2.357	9.243	0,34	0,82	19.265

Monate	0e	T	а
	[°C]	[h]	[-]
Jan	-1,53	54,00	4,38
Feb	0,73	54,36	4,40
Mar	4,81	54,00	4,38
Apr	9,62	54,11	4,38
Mai	14,20	54,00	4,38
Jun	17,33	54,11	4,38
Jul	19,12	54,00	4,38
Aug	18,56	54,00	4,38
Sep	15,03	54,11	4,38
Okt	9,64	54,00	4,38
Nov	4,16	54,11	4,38
Dez	0,19	54,00	4,38

Der flächenbezogene Heizwärmebedarf beträgt:

118,57 [kWh/(m²a)]

Blatt 11

Kühlbedarf Standort

Projekt: Gemeindeamt Willendorf

Monatliche Berechnung des Kühlbedarfs:

Standort	Willendorf	
Klimaregion	N/SO	
Seehöhe	400	m
LT	237,69	W/K
LV	51,15	W/K
Innentemperatur	26	°C
t_c,d	12	h/d
q_icn	7,50	W/m²
BGF	162,48	m²
^	45 500 07	\ \ / I / I_/

<u>. </u>			/n/K					••	
Monate	Trans	Lüft	Wärme-	Innere	Solare	Gesamt-	Gewinn/	Nutz	
	verluste	verluste	verluste	Gewinne	Gewinne	gewinne	verlust	grad	Bedarf
	[kWh/a]	[kWh/a]	[kWh/a]	[kWh/a]	[kWh/a]	[kWh/a]	Verhältn.		[kWh/a]
Jan	4.963	1.068	6.031	1.173	165	1.338	0,22	1,00	2,0
Feb	4.164	863	5.027	1.044	233	1.277	0,25	1,00	3,2
Mar	3.914	842	4.756	1.173	298	1.471	0,31	1,00	8,4
Apr	2.989	636	3.625	1.130	319	1.448	0,40	0,99	22,0
Mai	2.283	491	2.774	1.173	347	1.520	0,55	0,97	72,1
Jun	1.672	356	2.027	1.130	322	1.452	0,72	0,92	160,3
Jul	1.392	300	1.692	1.173	346	1.518	0,90	0,86	308,0
Aug	1.487	320	1.807	1.173	348	1.521	0,84	0,88	262,7
Sep	2.010	428	2.438	1.130	319	1.449	0,59	0,96	89,5
Okt	3.000	646	3.646	1.173	273	1.446	0,40	0,99	21,5
Nov	3.859	821	4.680	1.130	176	1.306	0,28	1,00	4,9
Dez	4.682	1.008	5.690	1.173	133	1.305	0,23	1,00	2,2
Summe	36.414	7.777	44.191	13.772	3.280	17.052	0,39	2,54	957

Monate	0e	Т	а
	[°C]	[h]	[-]
Jan	-2,07	54,00	4,38
Feb	-0,07	54,36	4,40
Mar	3,87	54,00	4,38
Apr	8,53	54,11	4,38
Mai	13,09	54,00	4,38
Jun	16,23	54,11	4,38
Jul	18,13	54,00	4,38
Aug	17,59	54,00	4,38
Sep	14,25	54,11	4,38
Okt	9,04	54,00	4,38
Nov	3,45	54,11	4,38
Dez	-0,48	54,00	4,38

Der spezifische Kühlbedarf KB bezogen auf die BGF betri

5,89 [kWh/(m²a)

Blatt 12

Kühlbedarf Referenzstandort

Projekt: Gemeindeamt Willendorf

Monatliche Berechnung des Kühlbedarfs:

Standort	Referenzklima	
Klimaregion	N/SO	
Seehöhe	0	m
LT	237,69	W/K
LV	51,15	W/K
Innentemperatur	26	°C
t_c,d	12	h/d
q_icn	7,50	W/m²
BGF	162,48	m²
^	45 500 07	\ \ / IL / IZ

<u>. </u>			/n/K					N	
Monate	Trans	Lüft	Wärme-	Innere	Solare	Gesamt-	Gewinn/	Nutz	D 1 (
	verluste	verluste	verluste	Gewinne	Gewinne	gewinne	verlust	grad	Bedarf
	[kWh/a]	[kWh/a]	[kWh/a]	[kWh/a]	[kWh/a]	[kWh/a]	Verhältn.		[kWh/a]
Jan	4.869	1.048	5.916	1.173	137	1.309	0,22	1,00	1,9
Feb	4.036	836	4.873	1.044	211	1.255	0,26	1,00	3,3
Mar	3.747	806	4.554	1.173	287	1.460	0,32	1,00	9,6
Apr	2.803	596	3.400	1.130	308	1.438	0,42	0,99	27,0
Mai	2.087	449	2.536	1.173	357	1.530	0,60	0,95	99,7
Jun	1.484	316	1.799	1.130	330	1.459	0,81	0,89	228,1
Jul	1.217	262	1.479	1.173	348	1.520	1,03	0,80	420,4
Aug	1.316	283	1.599	1.173	349	1.521	0,95	0,83	354,4
Sep	1.877	399	2.277	1.130	308	1.438	0,63	0,95	108,0
Okt	2.893	623	3.516	1.173	250	1.422	0,40	0,99	22,8
Nov	3.738	795	4.533	1.130	144	1.274	0,28	1,00	4,9
Dez	4.564	982	5.547	1.173	116	1.288	0,23	1,00	2,3
Summe	34.631	7.396	42.027	13.772	3.142	16.914	0,40	2,41	1.283

Monate	0e	Т	а	
	[°C]	[h]	[-]	
Jan	-1,53	54,00	4,38	
Feb	0,73	54,36	4,40	
Mar	4,81	54,00	4,38	
Apr	9,62	54,11	4,38	
Mai	14,20	54,00	4,38	
Jun	17,33	54,11	4,38	
Jul	19,12	54,00	4,38	
Aug	18,56	54,00	4,38	
Sep	15,03	54,11	4,38	
Okt	9,64	54,00	4,38	
Nov	4,16	54,11	4,38	
Dez	0,19	54,00	4,38	

Der spezifische Kühlbedarf KB bezogen auf die BGF betri

7,89 [kWh/(m²a]

Anforderung Kühlwärmebedarf KB*V

Projekt: **Gemeindeamt Willendorf** Datum: 30. August 2012 Blatt 13

Monatliche Berechnung der Anforderung an den Kühlbedarf KB*V:

Standort Referenzklima Klimaregion N/SO Seehöhe 0 W/K LT 237,69 W/K L۷ 17,24 Innentemperatur 26 °C t_c,d q_icn BGF h/d 12 W/m² 7,50 162,48 15 598 37 $\,m^2$ Wh/K

C	15.5	98,37 V	Vh/K						
Monate	Trans verluste [kWh/a]	Lüft verluste [kWh/a]	Wärme- verluste [kWh/a]	Innere Gewinne [kWh/a]	Solare Gewinne [kWh/a]	Gesamt- gewinne [kWh/a]	Gewinn/ verlust Verhältn.	Nutz grad	Bedarf [kWh/a]
Jan	4.869	353	5.222	0	137	137	0,03	1,00	0,0
Feb	4.036	293	4.329	0	211	211	0,05	1,00	0,0
Mar	3.747	272	4.019	0	287	287	0,07	1,00	0,0
Apr	2.803	203	3.007	0	308	308	0,10	1,00	0,0
Mai	2.087	151	2.238	0	357	357	0,16	1,00	0,1
Jun	1.484	108	1.591	0	330	330	0,21	1,00	0,2
Jul	1.217	88	1.305	0	348	348	0,27	1,00	0,6
Aug	1.316	95	1.411	0	349	349	0,25	1,00	0,4
Sep	1.877	136	2.014	0	308	308	0,15	1,00	0,0
Okt	2.893	210	3.103	0	250	250	0,08	1,00	0,0
Nov	3.738	271	4.009	0	144	144	0,04	1,00	0,0
Dez	4.564	331	4.895	0	116	116	0,02	1,00	0,0
Summe	34.631	2.511	37.142	0	3.142	3.142	0,08	11,82	1

Monate	0e	Т	a	
	[°C]	[h]	[-]	
Jan	-1,53	61,19	4,82	
Feb	0,73	61,19	4,82	
Mar	4,81	61,19	4,82	
Apr	9,62	61,19	4,82	
Mai	14,20	61,19	4,82	
Jun	17,33	61,19	4,82	
Jul	19,12	61,19	4,82	
Aug	18,56	61,19	4,82	
Sep	15,03	61,19	4,82	
Okt	9,64	61,19	4,82	
Nov	4,16	61,19	4,82	
Dez	0,19	61,19	4,82	

Der spezifische Kühlbedarf KB*V bezogen auf das Brutto

0,00 [kWh/(m³a)

Anforderung Heizwärmebedarf QH*V

Projekt: **Gemeindeamt Willendorf** Datum: 30. August 2012 Blatt 14

Monatliche Berechnung der Anforderung an den Heizwärmebedarf HWB*V:

Standort	Referenzklima	
Klimaregion	N/SO	
Seehöhe	0	m
LT	237,69	W/K
LV	45,96	W/K
Innentemperatur	20	°C
t_c,d	12	h/d
q_icn	7,50	W/m²
BGF	162,48	m²
^	45 500 07	\ \ / / / / / / / /

<u>C</u>	15.5	98,37 V	Vh/K						
Monate	Trans	Lüft	Wärme-	Innere	Solare	Gesamt-	Gewinn/	Nutz	
	verluste [kWh/a]	verluste [kWh/a]	verluste [kWh/a]	Gewinne [kWh/a]	Gewinne [kWh/a]	gewinne [kWh/a]	verlust Verhältn.	grad	Bedarf [kWh/a]
las								1.00	
Jan	3.807	736	4.544	363	116	479	0,11	1,00	4.064,9
Feb	3.078	595	3.673	328	179	507	0,14	1,00	3.166,7
Mar	2.686	519	3.206	363	244	607	0,19	1,00	2.599,4
Apr	1.776	344	2.120	351	262	613	0,29	1,00	1.509,1
Mai	1.026	198	1.224	363	304	666	0,54	0,97	579,0
Jun	457	88	545	351	280	631	1,16	0,75	70,7
Jul	156	30	186	363	295	658	3,54	0,28	0,5
Aug	255	49	304	363	296	659	2,17	0,45	5,4
Sep	851	164	1.015	351	262	613	0,60	0,95	430,0
Okt	1.832	354	2.186	363	212	575	0,26	1,00	1.612,6
Nov	2.711	524	3.235	351	122	473	0,15	1,00	2.762,0
Dez	3.503	677	4.181	363	98	461	0,11	1,00	3.719,7
Summe	22.138	4.281	26.419	4.270	2.671	6.941	0,26	0,85	20.520

Monate	0e	Т	а	
	[°C]	[h]	[-]	
Jan	-1,53	54,99	4,44	
Feb	0,73	54,99	4,44	
Mar	4,81	54,99	4,44	
Apr	9,62	54,99	4,44	
Mai	14,20	54,99	4,44	
Jun	17,33	54,99	4,44	
Jul	19,12	54,99	4,44	
Aug	18,56	54,99	4,44	
Sep	15,03	54,99	4,44	
Okt	9,64	54,99	4,44	
Nov	4,16	54,99	4,44	
Dez	0,19	54,99	4,44	

Der spezifische Heizwärmebedarf HWB*V bezogen auf da

39,47 = (ka/gh/(m³a)]

Solare Aufnahmeflächen

Projekt: **Gemeindeamt Willendorf**

Datum: 30. August 2012

Blatt 15

Solare Aufnahmeflächen

Die Verschattung wurde vereinfacht berechnet

Wand	Fenster	Richtung	Neigung	Fläche	gw	Glasanteil	F_s	A_trans	Qs
		[°]	[°]	[m²]	[-]	[%]	[-]	[m²]	[kWh]
Süd	AF 1,37/1,34m U=1,76	180,00	90,00	3,67	0,54	53,81	0,75	0,80	686,49
Süd	AF 1,07/1,34m U=1,79	180,00	90,00	2,87	0,54	58,02	0,75	0,67	578,09
Süd	AT 1,97/2,25m U=1,66	180,00	90,00	4,43	0,54	37,06	0,75	0,66	570,80
West	AF 1,10/1,20m U=1,98	270,00	90,00	2,64	0,54	56,59	0,75	0,60	407,35
West	AF 1,10/0,75m U=2,01	270,00	90,00	1,65	0,54	48,24	0,75	0,32	217,03

Blatt 16

Transmissionsverluste

Projekt: Gemeindeamt Willendorf

Le Verluste zu Außenluft

Bezeichnung	A [m²]	U [W/m²K]	f_ih [-]	F_FH [-]	A*U*f_ih*F_FH [W/K]
Nord	4,34	0,40	1,000	1,000	1,74
Süd	31,09	0,40	1,000	1,000	12,43
AF 1,37/1,34m U=1,76	3,67	1,76	1,000	1,000	6,46
AF 1,07/1,34m U=1,79	2,87	1,79	1,000	1,000	5,13
AT 1,97/2,25m U=1,66	4,43	1,66	1,000	1,000	7,36
West	22,38	0,40	1,000	1,000	8,95
AF 1,10/1,20m U=1,98	2,64	1,98	1,000	1,000	5,23
AF 1,10/0,75m U=2,01	1,65	2,01	1,000	1,000	3,32
Ost	3,20	0,40	1,000	1,000	1,28
Decke unter Loggia	16,43	0,95	1,000	1,000	15,60
Summe	92,70				67,51

Lu Verluste zu sonstigem Pufferraum

Bezeichnung	Α	U	f_ih	F_FH	A*U*f_ih*F_FH
	[m²]	[W/m ² K]	[-]	[-]	[W/K]
Ziegeltrennwand	50,28	0,51	0,700	1,000	17,95
IT 0,85/2,04m U=2,84	1,73	2,84	0,700	1,000	3,45
Schutzraumwand	15,87	2,47	0,700	1,000	27,43
IT 0,85/2,04m U=2,84	1,73	2,84	0,700	1,000	3,45
Summe	69,62				52,28

Lg Verluste zu Erdreich oder zu unkonditioniertem Keller

Bezeichnung	Α	U	f_ih	F_FH	A*U*f_ih*F_FH
	[m²]	[W/m ² K]	[-]	[-]	[W/K]
Erdanliegend <= 1,5m unter Erdreich	5,43	0,44	0,800	1,000	1,91
Erdanliegend <= 1,5m unter Erdreich	14,96	0,44	0,800	1,000	5,27
Erdanliegend > 1,5m unter Erdreich	1,81	0,44	0,600	1,000	0,48
Grundplatte	162,48	0,91	0,700	1,000	103,50
Summe	184,68				111,16

Leitwerte

Hüllfläche AB	347,00	m²
Leitwert für Bauteile, die an Außenluft grenzen Le	67,51	W/K
Leitwert für Bauteile, die an unbeheizte Räume grenzen Lu	52,28	W/K
Leitwert für bodenberührte Bauteile und Bauteile, die an unkonditionierte Keller grenzen Lg	111,16	W/K
Leitwert der Gebäudehülle L⊤	237,69	W/K
Leitwertzuschlag für Wärmebrücken (vereinfacht)	6,75	W/K
Leitwertzuschlag für Wärmebrücken (detailliert lt. Baukörper) (informativ)	14,22	W/K
Lüftungsleitwert L v	51,15	W/K

_	ei	_	_	-1	
	ΔІ	71	2	SI	•

Innentemperatur T _i	20,0	°C
Normaußentemperatur T _{Ne}	-13,3	°C
Temperaturdifferenz delta T	33,3	°C
Heizlast Ptot	9.619	W
Flächenbez. Heizlast P ₁	59,2	W/m²

Lüftungsverluste

Projekt: Gemeindeamt Willendorf

Beiblatt: 2 c

Datum: 30. August 2012 Blatt 17

Lüftungsverluste Nichtwohngebäude - Heizfall - natürliche Lüftung

	Jän	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
Hygienisch erforderliche Luftwechselrate n_i [1/h]	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2
Nutzungstage im Monat d _{Nutz} [d/M]	23	20	23	22	23	22	23	23	22	23	22	23
Tägliche Nutzungszeit t _{Nutz-d} [h/d]	12	12	12	12	12	12	12	12	12	12	12	12
Monatliche Gesamtzeit t [h/M]	744	672	744	720	744	720	744	744	720	744	720	744
Mittlere monatliche Luftwechselrate im Heizfall $n_{l,m,h}$ [1/h]	0,445	0,429	0,445	0,440	0,445	0,440	0,445	0,445	0,440	0,445	0,440	0,445
Brutto-Grundfläche BGF [m²]	162,48	162,48	162,48	162,48	162,48	162,48	162,48	162,48	162,48	162,48	162,48	162,48
Energetisch wirksames Luftvolumen V _v [m³]	337,96	337,96	337,96	337,96	337,96	337,96	337,96	337,96	337,96	337,96	337,96	337,96
Wärmekapazität der Luft $\rho_L \cdot c_{n,L}$ [Wh/(m ³ ·K)]	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34
Lüftungsleitwert im Heizfall infolge Fenster-Lüftung L _{Vh.Fl.} [W/K]	51,15	49,25	51,15	50,56	51,15	50,56	51,15	51,15	50,56	51,15	50,56	51,15
Lüftungsverlust im Heizfall infolge Fenster-Lüftung Q _{Vh,FL} [kWh]	840	664	614	417	263	137	71	92	209	417	602	779

Die Wärmekapazität der Luft ist mit $c_{p,L} \cdot \rho_L = 0.34 \text{ Wh/(m}^3 \cdot \text{K)}$ anzusetzen.

Die mittlere monatliche Luftwechselrate im Heizfall wird gemäß ÖNORM B 8110-6:2007 wie folgt ermittelt: $n_{L,m,h} = \frac{n_L \cdot t_{Nutz,d} \cdot d_{Nutz}}{t}$

Der Lüftungsleitwert im Heizfall für Nichtwohngebäude infolge Fenster-Lüftung wird gemäß ÖNORM B 8110-6:2007 wie folgt ermittelt: $L_{Vh,FL} = c_{p,L} \ v_{PL} \cdot V_v \cdot n_{L,m,h}$

Lüftungsverluste

Projekt: Gemeindeamt Willendorf

Beiblatt: 2 c

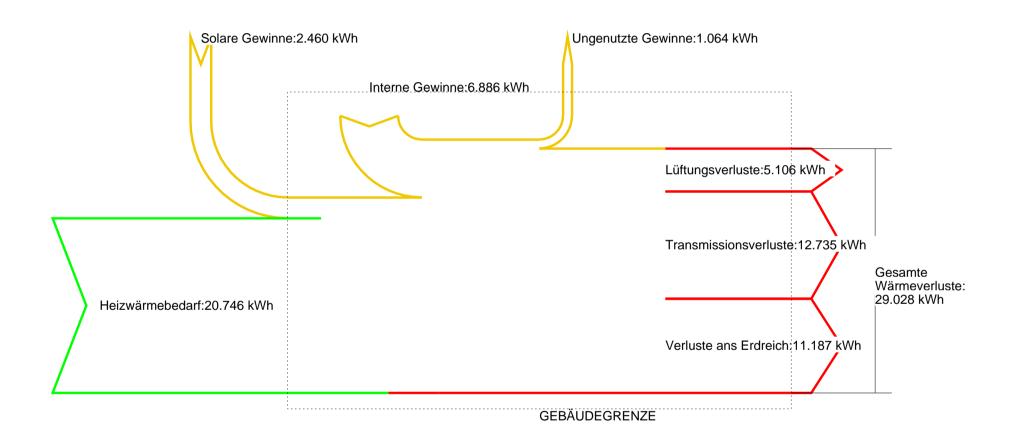
Datum: 30. August 2012 Blatt 18

Lüftungsverluste Nichtwohngebäude - Kühlfall - natürliche Lüftung

	Jän	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
Hygienisch erforderliche Luftwechselrate <i>n</i> , [1/h]	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2
Zusätzlich wirksame Luftwechselrate bei Nachtlüftung $n_{t,NI}$ [1/h]	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2
Tägliche Nutzungszeit t _{Nutz.d} [h/d]	12	12	12	12	12	12	12	12	12	12	12	12
Tägliche Nutzungszeit der Nachtlüftung t _{NL d} [h/d]	8	8	8	8	8	8	8	8	8	8	8	8
Nutzungstage im Monat d_{Nutz} [d/M]	23	20	23	22	23	22	23	23	22	23	22	23
Monatliche Gesamtzeit t [h/M]	744	672	744	720	744	720	744	744	720	744	720	744
Mittlere monatliche Luftwechselrate im Kühlfall n _{l, m,c} [1/h]	0,445	0,429	0,445	0,440	0,445	0,440	0,445	0,445	0,440	0,445	0,440	0,445
Brutto-Grundfläche BGF [m²]	162,48	162,48	162,48	162,48	162,48	162,48	162,48	162,48	162,48	162,48	162,48	162,48
Energetisch wirksames Luftvolumen V_{ν} [m³]	337,96	337,96	337,96	337,96	337,96	337,96	337,96	337,96	337,96	337,96	337,96	337,96
Wärmekapazität der Luft ρ _L · c _{p,L} [Wh/(m³·K)]	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34
Lüftungsleitwert im Kühlfall infolge Fenster-Lüftung L _{Vc Ft} [W/K]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Lüftungsverlust im Kühlfall infolge Fenster-Lüftung Q _{Vc,Fl} [W/K]	1068,08	862,68	842,25	635,81	491,21	355,58	299,59	319,95	427,59	645,65	820,81	1007,69

Die Wärmekapazität der Luft ist mit $c_{p,L} \cdot \rho_L = 0.34 \text{ Wh/(m}^3 \cdot \text{K)}$ anzusetzen.

Die mittlere monatliche Luftwechselrate im Kühlfall wird gemäß ÖNORM B 8110-6:2007 wie folgt ermittelt: $n_{L,m,c} = \frac{n_L \cdot t_{Nutz,d} \cdot d_{Nutz} + n_{L,NL} \cdot t_{NL,d} \cdot d_{Nutz}}{t}$ mit $t_{NL,d} = 24 - t_{Nutz,d} <= 8$


Der Lüftungsleitwert im Heizfall für Nichtwohngebäude infolge Fenster-Lüftung wird gemäß ÖNORM B 8110-6:2007 wie folgt ermittelt: $L_{Vc,FL} = c_{p,L} \cdot {}^{\rho}{}_{L} \cdot V_{v} \cdot n_{L,c,h}$

Blatt 19

Energiebilanz:

Projekt: Gemeindeamt Willendorf

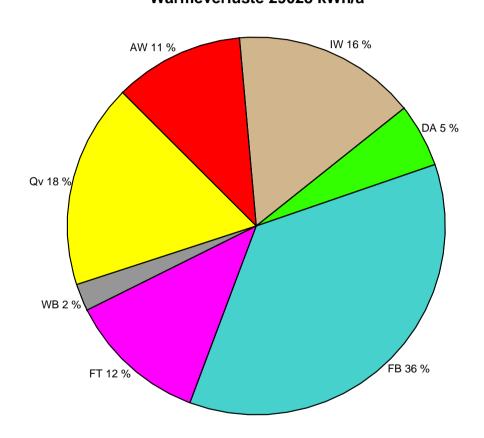

Blatt:: Energiebilanz

Diagramm Wärmeverluste

Projekt: Gemeindeamt Willendorf

Wärmeverluste 29028 kWh/a

Datum: 30. August 2012

Blatt 20

Projekt: **Gemeindeamt Willendorf** Datum: 30. August 2012 Blatt 21

Bauteil: AW 0,43m U=0,40

Verwendung: A	ußenwand								
	Konstruktion		U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
Außen	(Skizze)	Innen					[m]	[W/mK]	[m ² *K/W]
					-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,040
			✓	₹	1	Dämmputz Perlite, Polystyrol bis 450 kg/m³	0,030	0,130	0,231
			✓.	¥	2	hochporosierter Hohlziegel mit Dämmmörtel	0,380	0,180	2,111
	7 × 100		\mathbf{Z}	\mathbf{Y}	3	Kalk - Zementputz	0,015	1,000	0,015
(i) []					-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,130
		[
8 / / /	/ / 開催								
m 2 / / /	/ / 期間								
■ / / /									
	- / // // // // // // // // // // // //								
	- / - / 期間								
	/ / 期後								
	/ / IIII								
M / / /	/ / W/								
	/ W								
		Ī							
0,425	m →								
`	<u> </u>	Ī	*) R _T	lt. EN IS	SO 6946	S = R _{si} + Summe R-Wert der Schichten + R _{se}	0,425		2,527 *)
				rt [W/m					0,40

[☑] wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist nicht erfüllt.

Geforderter U-Wert		Berechneter U-Wert	
0,35	W/m²K	0,40	W/m²K

Bauteil: AW erdanliegend 0,41m U=0,44

verwendung: e	rdanliegende Wand			OI3	Nr	Densishavan	Dicke	Lambda	R-Wert
A O	Konstruktion	lanan	U	Ol3	INI	Bezeichnung			
Außen	(Skizze)	Innen				14/" "1 14 14 5	[m]	[W/mK]	[m ² *K/W]
			_	_	-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,000
			4	✓	1	PE-Dichtbahnen, Bitumen-Flämmpappe	0,010	0,260	0,038
				\mathbf{Z}	2	hochporosierter Hohlziegel mit Dämmmörtel	0,380	0,180	2,111
1 1	7 A(60)		✓	✓	3	Kalk - Zementputz	0,015	1,000	0,015
	/ / HIII				-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,130
	/ / 頻樹								,
f-f	- <i>∫</i> (1886)								
1 1 1	/ ///////								
1 1 1	/ JAM								
	/ / Mills								
<i> </i>	人 人間對								
	/ / WIN								
1 / / /	- / 機能								
1 1 1	<i>f</i> #07								
1 / /									
0.405	. 1								
/ 0,405 r	<u>m</u>								
`	/		*) RT	lt. EN I	SO 6946	S = Rsi + Summe R-Wert der Schichten + Rse	0,405		2,295 *)
			Ú-We	rt [W/n	n²K]				0,44

 ${f M}$ wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist nicht erfüllt.

Geforderter U-Wert		Berechneter U-Wert	
0,40	W/m²K	0,44	W/m²K

Projekt: **Gemeindeamt Willendorf** Datum: 30. August 2012 Blatt 22

Bauteil: IW 0,32m U=2,47

Verwendung: In						T =			
	Konstruktion		U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
Außen	(Skizze)	Innen					[m]	[W/mK]	[m ² *K/W]
					-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,130
			Y	K	1	Stahlbeton	0,300	2,300	0,130
The second secon		[4	V	2	Kalk - Zementputz	0,015	1,000	0,015
TIT	701HH				-	Wärmeübergangswiderstand Innen Rs,i		-	0,130
	/ HWI								
	/ H000								
	/ 4004								
		Ī							
1 1 1 1		Ī							
'	- AND	Ī							
	/HIII	T I							
-1 -1 -1	/ IIII								
	/ M/49	ı							
1 1 1 1	1447	ŀ					1		
1 1 1 1	- NV	-							
		H							
/ 0,315 m	$\sqrt{}$	- H					1		
		-	*) R⊤ I	t FN IS	SO 6946	i = R _{si} + Summe R-Wert der Schichten + R _{se}	0,315		0,405 *)
	•	ŀ		rt [W/m		To Comment the Comment of the Commen	3,010		2,47
			<u> </u>	1 C [+ V/11					2,71

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist nicht erfüllt.

Geforderter U-Wert		Berechneter U-Wert	
0,60	W/m²K	2,47	W/m²K

Bauteil: IW 0,33m U=0,51

	Konstruktion		U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
Außen	(Skizze)	Innen					[m]	[W/mK]	[m ² *K/W]
					-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,130
			\mathbf{Y}	Y	1	Kalk - Zementputz	0,015	1,000	0,015
			ď	¥	2	hochporosierter Hohlziegel mit Dämmmörtel	0,300	0,180	1,667
	7 (1)(i)		ď	₹.	3	Kalk - Zementputz	0,015	1,000	0,015
	/110%				-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,130
	/ WEN								
1/1/1/1									
V + I + I									
	////////								
1 / / /	/ 開閉	-					-		
	/ WAR	-							
I I I I I		-							
1	A S	-							
V = V = V		-							
/ 0,330 m	$\sqrt{}$	-							
	7	-	*\ D_	L ENLI	SO 6046	6 = R _{si} + Summe R-Wert der Schichten + R _{se}	0,330		1,957 *)
1	1	-		rt [W/m		D = NSI + Summe N-Well der Schichten + Kse	0,330		0,51

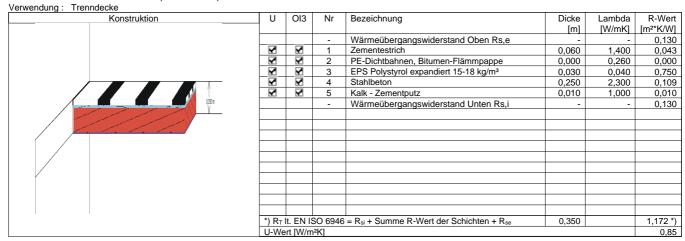
[☑] wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert		Berechneter U-Wert	
0,60	W/m²K	0,51	W/m²K

Projekt: **Gemeindeamt Willendorf** Datum: 30. August 2012 Blatt 23

Bauteil: FB 0,25m U=0,91


Verwendung: erdanliegender Fußboden							
Konstruktion	U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
					[m]	[W/mK]	[m ² *K/W]
			-	Wärmeübergangswiderstand Aussen Rs,i	-	-	0,170
	✓	Y	1	Zementestrich	0,060	1,400	0,043
		\mathbf{Z}	2	PE-Dichtbahnen, Bitumen-Flämmpappe	0,000	0,260	0,000
	₩.	Y	3	EPS Polystyrol expandiert 15-18 kg/m ³	0,030	0,040	0,750
	\mathbf{Z}	₹	4	PE-Dichtbahnen, Bitumen-Flämmpappe	0,010	0,260	0,038
		Ŋ	5	Schütt- und Stampfbeton	0,150	1,600	0,094
			-	Wärmeübergangswiderstand Innen Rs,e	-	-	0,000
	*) RT	lt. EN I	SO 6946	S = R _{si} + Summe R-Wert der Schichten + R _{se}	0,250		1,095 *)
	U-We	ert [W/m	n²K]				0,91

[☑] wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist nicht erfüllt.

Geforderter U-Wert		Berechneter U-Wert	
0,40	W/m²K	0,91	W/m²K

Bauteil: DE Trenndecke 0,35m U=0,85

[☑] wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert		Berechneter U-Wert	
0,90	W/m²K	0,85	W/m²K

Projekt: **Gemeindeamt Willendorf** Datum: 30. August 2012 Blatt 24

Bauteil: DA 0,35m U=0,95

Verwendung: Dach ohne Hinterlüftung							
Konstruktion	U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
					[m]	[W/mK]	[m ² *K/W]
			-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,040
	Y	Š	1	Zementestrich	0,060	1,400	0,043
	\mathbf{r}	₩.	2	PE-Dichtbahnen, Bitumen-Flämmpappe	0,000	0,260	0,000
	\mathbf{Y}	Y	3	EPS Polystyrol expandiert 15-18 kg/m³	0,030	0,040	0,750
	₩.	₩.	4	Stahlbeton	0,250	2,300	0,109
08in	\mathbf{Y}	Y	5	Kalk - Zementputz	0,010	1,000	0,010
QHn			-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,100
	*) RT	It. EN IS	SO 6946	S = R _{si} + Summe R-Wert der Schichten + R _{se}	0,350		1,052 *)
	U-We	ert [W/m	12K]	<u> </u>			0,95

 $[{]f M}$ wird in der U-Wert Berechnung / Ol3 Berechnung berücksichtigt

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist nicht erfüllt.

Geforderter U-Wert		Berechneter U-Wert	
0,20	W/m²K	0,95	W/m²K

Projekt: **Gemeindeamt Willendorf** Datum: 30. August 2012 Blatt 25

Außenfenster: AF 1,07/1,34m U=1,79

 Breite :
 1,07 m

 Höhe :
 1,34 m

 Glasumfang :
 8,96 m

Dichtheit für bestehende Gebäude klassifiziert :

Durchschn.Erhaltungszustand

Sanierung NÖ: Fenster unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert	Breite	Baustoff
		[W/m²K]	[m]	
Innere Füllfläche	1	1,50	-	Zweifach-Wärmeschutzglas beschichtet 4-16-4 (Luft) (Ug 1,5)
Rahmen	1	1,60	0,12	Weichholz (500 kg/m³, Lambda 0,13) 70 mm (Uf 1,6)
Vertikal-Sprossen	1	1,60	0,03	Weichholz (500 kg/m³, Lambda 0,13) 70 mm (Uf 1,6)
Horizontal-Sprossen	2	1,60	0,03	Weichholz (500 kg/m³, Lambda 0,13) 70 mm (Uf 1,6)

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Mehrfachgläser, unbeschichtet / Holz- und Kunststoffrahmen

ψ: 0,04 W/(m·K) Glasumfang : 8,96 m

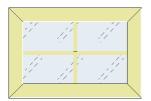
Zusammenfassung

Glasfläche: 0,83 m² Rahmenfläche: 0,60 m²

 Gesamtfläche :
 1,43 m²
 Glasanteil :
 58%

 U-Wert :
 1,79 W/m²K
 g-Wert :
 0,61

U-Wert bei 1,23m x 1,48m : 1,63 W/m²K


Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert bei 1,23m x 1,48m

1,70 W/m²K 1,63 W/m²K 1,79 W/m²K

Projekt: **Gemeindeamt Willendorf** Datum: 30. August 2012 Blatt 26

Außenfenster: AF 1,10/0,75m U=2,01

 Breite :
 1,10 m

 Höhe :
 0,75 m

 Glasumfang :
 5,24 m

Dichtheit für bestehende Gebäude klassifiziert :

Durchschn. Erhaltungszustand

Sanierung NÖ: Fenster unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert	Breite	Baustoff
		[W/m²K]	[m]	
Innere Füllfläche	1	1,50	-	Zweifach-Wärmeschutzglas beschichtet 4-16-4 (Luft) (Ug 1,5)
Rahmen	1	2,00	0,12	PVC-Hohlprofile 3 Kammern (Uf 2,0)
Vertikal-Sprossen	1	2,00	0,03	PVC-Hohlprofile 3 Kammern (Uf 2,0)
Horizontal-Sprossen	1	2,00	0,03	PVC-Hohlprofile 3 Kammern (Uf 2,0)

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Mehrfachgläser, unbeschichtet / Holz- und Kunststoffrahmen

ψ: 0,04 W/(m·K) Glasumfang: 5,24 m

Zusammenfassung

Glasfläche: 0,40 m²

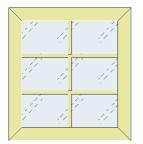
Rahmenfläche: 0,43 m²

 Gesamtfläche :
 0,83 m²
 Glasanteil :
 48%

 U-Wert :
 2,01 W/m²K
 g-Wert :
 0,61

U-Wert bei 1,23m x 1,48m : 1,76 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist nicht erfüllt.


Geforderter U-Wert

Berechneter U-Wert bei 1,23m x 1,48m **Berechneter U-Wert**

1 70 W/m²K	1 76	W/m²K	2 01	W/m²K
1,70 VV/m²K	1,76	VV/m²K	2,01	VV/m²K

Projekt: Gemeindeamt Willendorf Datum: 30. August 2012 Blatt 27

Außenfenster: AF 1,10/1,20m U=1,98

Breite: 1.10 m Höhe: 1,20 m Glasumfang: 8,58 m

Dichtheit für bestehende Gebäude klassifiziert :

Durchschn. Erhaltungszustand

Sanierung NÖ: Fenster unverändert

Berechneter U-Wert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert	Breite	Baustoff
		[W/m ² K]	[m]	
Innere Füllfläche	1	1,50	-	Zweifach-Wärmeschutzglas beschichtet 4-16-4 (Luft) (Ug 1,5)
Rahmen	1	2,00	0,12	PVC-Hohlprofile 3 Kammern (Uf 2,0)
Vertikal-Sprossen	1	2,00	0,03	PVC-Hohlprofile 3 Kammern (Uf 2,0)
Horizontal-Sprossen	2	2,00	0,03	PVC-Hohlprofile 3 Kammern (Uf 2,0)

Detail-Daten

Bezeichnung	Anzahl	Fläche	Dicke	Baustoff	g-Wert
horizontales Rahmen-	1	0,12 m ²	0,10 m	PVC-Hohlprofile 3 Kammern (Uf 2,0)	-
Rechteck				, , , ,	
vertikales Rahmen-Rechteck	1	0,13 m ²	0,10 m	PVC-Hohlprofile 3 Kammern (Uf 2,0)	-
horizontales Rahmen-	1	0,12 m ²	0,10 m	PVC-Hohlprofile 3 Kammern (Uf 2,0)	-
Rechteck				, , , ,	
vertikales Rahmen-Rechteck	1	0,13 m ²	0,10 m	PVC-Hohlprofile 3 Kammern (Uf 2,0)	-
Glas-Rechteck	1	0,12 m ²	0,02 m	Zweifach-Wärmeschutzglas beschichtet 4-16-4 (Luft) (Ug 1,5)	0,61
Glas-Rechteck	1	0,12 m ²	0,02 m	Zweifach-Wärmeschutzglas beschichtet 4-16-4 (Luft) (Ug 1,5)	0,61
Glas-Rechteck	1	0,12 m ²	0,02 m	Zweifach-Wärmeschutzglas beschichtet 4-16-4 (Luft) (Ug 1,5)	0,61
Glas-Rechteck	1	0,12 m ²	0,02 m	Zweifach-Wärmeschutzglas beschichtet 4-16-4 (Luft) (Ug 1,5)	0,61
Glas-Rechteck	1	0,12 m ²	0,02 m	Zweifach-Wärmeschutzglas beschichtet 4-16-4 (Luft) (Ug 1,5)	0,61
Glas-Rechteck	1	0,12 m ²	0,02 m	Zweifach-Wärmeschutzglas beschichtet 4-16-4 (Luft) (Ug 1,5)	0,61
Sprossen-Rechteck horizontal	1	0,03 m ²	0,10 m	PVC-Hohlprofile 3 Kammern (Uf 2,0)	-
Sprossen-Rechteck horizontal	1	0,03 m ²	0,10 m	PVC-Hohlprofile 3 Kammern (Uf 2,0)	-
Sprossen-Rechteck vertikal	1	0,01 m ²	0,10 m	PVC-Hohlprofile 3 Kammern (Uf 2,0)	-
Sprossen-Rechteck vertikal	1	0,01 m ²	0,10 m	PVC-Hohlprofile 3 Kammern (Uf 2,0)	-
Sprossen-Rechteck vertikal	1	0,01 m ²	0,10 m	PVC-Hohlprofile 3 Kammern (Uf 2,0)	-

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Mehrfachgläser, unbeschichtet / Holz- und Kunststoffrahmen

0,04 W/(m·K) Glasumfang: 8,58 m

Zusammenfassung

Glasfläche: 0,75 m²

Rahmenfläche: 0,57 m²

Gesamtfläche: Glasanteil: 1,32 m² 57% U-Wert: 1,98 W/m2K g-Wert: 0,61

U-Wert bei 1,23m x 1,48m: 1,76 W/m2K

Geforderter U-Wert

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist nicht erfüllt.

Berechneter U-Wert

W/m²K W/m²K W/m²K 1,70 1,76 1,98

bei 1,23m x 1,48m

Projekt: **Gemeindeamt Willendorf** Datum: 30. August 2012 Blatt 28

Außenfenster: AF 1,37/1,34m U=1,76

 Breite :
 1,37 m

 Höhe :
 1,34 m

 Glasumfang :
 9,86 m

Dichtheit für bestehende Gebäude klassifiziert :

Durchschn. Erhaltungszustand

Sanierung NÖ: Fenster unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert	Breite	Baustoff
		[W/m²K]	[m]	
Innere Füllfläche	1	1,50	-	Zweifach-Wärmeschutzglas beschichtet 4-16-4 (Luft) (Ug 1,5)
Rahmen	1	1,60	0,12	Weichholz (500 kg/m³, Lambda 0,13) 70 mm (Uf 1,6)
Vertikal-Sprossen	1	1,60	0,18	Weichholz (500 kg/m³, Lambda 0,13) 70 mm (Uf 1,6)
Horizontal-Sprossen	2	1,60	0,03	Weichholz (500 kg/m³, Lambda 0,13) 70 mm (Uf 1,6)

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Mehrfachgläser, unbeschichtet / Holz- und Kunststoffrahmen

ψ: 0,04 W/(m·K) Glasumfang : 9,86 m

Zusammenfassung

Glasfläche: 0,99 m²

Rahmenfläche: 0,85 m² **Gesamtfläche: 1,84 m²**

 Gesamtfläche:
 1,84 m²
 Glasanteil:
 54%

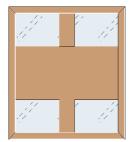
 U-Wert:
 1,76 W/m²K
 g-Wert:
 0,61

U-Wert bei 1,23m x 1,48m : 1,63 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

Berechneter U-Wert bei 1,23m x 1,48m Berechneter U-Wert


1.76

W/m²K

	\//m2k	ì		
1,70	W/m ² K		1,63	W

Projekt: **Gemeindeamt Willendorf** Datum: 30. August 2012 Blatt 29

Außentür: AT 1,97/2,25m U=1,66

 Breite :
 1,97 m

 Höhe :
 2,25 m

 Glasumfang :
 10,36 m

Dichtheit für bestehende Gebäude klassifiziert :

Durchschn. Erhaltungszustand

Sanierung NÖ: Tür unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert	Breite	Baustoff
		[W/m ² K]	[m]	
Innere Füllfläche	1	1,50	-	Zweifach-Wärmeschutzglas beschichtet 4-16-4 (Luft) (Ug 1,5)
Rahmen	1	1,60	0,12	Weichholz (500 kg/m³, Lambda 0,13) 70 mm (Uf 1,6)
Vertikal-Sprossen	1	1,60	0,25	Weichholz (500 kg/m³, Lambda 0,13) 70 mm (Uf 1,6)
Horizontal-Sprossen	1	1,60	0,90	Weichholz (500 kg/m³, Lambda 0,13) 70 mm (Uf 1,6)

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Mehrfachgläser, unbeschichtet / Holz- und Kunststoffrahmen

ψ: 0,04 W/(m⋅K) Glasumfang : 10,36 m

Zusammenfassung

Glasfläche: 1,64 m²

Rahmenfläche: 2,79 m² **Gesamtfläche:** 4,43 m²

 Gesamtfläche:
 4,43 m²
 Glasanteil:
 37%

 U-Wert:
 1,66 W/m²K
 g-Wert:
 0,61

U-Wert bei 1,23m x 1,48m : 1,63 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

Berechneter U-Wert bei 1,23m x 1,48m

Berechneter U-Wert

1 70	W/m²K	1

1	63	W/m²K

Projekt: **Gemeindeamt Willendorf** Datum: 30. August 2012 Blatt 30

Innentür: IT 0,85/2,04m U=2,84

 Breite :
 0,85 m

 Höhe :
 2,04 m

 Glasumfang :
 5,54 m

Dichtheit für bestehende Gebäude klassifiziert : Guter Erhaltungszustand ohne Dichtung Sanierung NÖ: Tür unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert	Breite	Baustoff
		[W/m²K]	[m]	
Innere Füllfläche	1	2,50	-	Innentür Standard
Rahmen	1	6,00	0,03	Metallrahmen ohne thermischer Trennung (Uf 6,0)
Vertikal-Sprossen	0		0,00	Metallrahmen ohne thermischer Trennung (Uf 6,0)
Horizontal-Sprossen	0		0,00	Metallrahmen ohne thermischer Trennung (Uf 6,0)

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Mehrfachgläser, unbeschichtet / Metallrahmen ohne Wärmebrücken-Unterbrechung

ψ: 0,00 W/(m·K) Glasumfang : 5,54 m

Zusammenfassung

 $\begin{array}{ll} \mbox{Glasfläche}: & 0,00 \ \mbox{m}^2 \\ \mbox{Rahmenfläche}: & 1,73 \ \mbox{m}^2 \end{array}$

Gesamtfläche: 1,73 m² Glasanteil: 0%

U-Wert : 2,84 W/m²K U-Wert bei 1,23m x 1,48m : 2,81 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

Berechneter U-Wert bei 1,23m x 1,48m

g-Wert:

Berechneter U-Wert

0,60

_ W/m²K	2 81	W/m²K	2 84	W/m²K
■ VV/111 1X	∠, o⊥	VV/111 1X	4,04	V V / 111 1 X

Blatt 31

Baukörper-Dokumentation Gemeindeamt Willendorf

Projekt: **Gemeindeamt Willendorf** Baukörper: **Gemeindeamt Willendorf**

Beheizte Hülle

Bezeichnung	Anz.	Breite	Höhe		Bauteil		Ausrichtung	Zust	tand	Brutto- Fläche	Netto- Fläche
Nord	1	3,62 m	1,20 m	AW 0,43r	n U=0,40		Nord		ırm / ıßen	4,34 m ²	4,34 m²
Süd	1	13,30 m	3,20 m	AW 0,43r	n U=0,40		Süd	wa	ırm / ıßen	42,06 m ²	31,09 m²
		ge/Zuschläg			Zeichnu	ing	P	arameter	Anz.	Einzelfl.	Gesamtfl.
	AF 1,3	37/1,34m L	J=1,76						2	-1,84 m ²	-3,67 m ²
	AF 1,0	07/1,34m L	J=1,79						2	-1,43 m ²	-2,87 m ²
		97/2,25m L							1	-4,43 m ²	-4,43 m ²
	Erdrei		•				a =	0,50 m	1	-0,50 m ²	-0,50 m ²
						b	b =	1,00 m		,	,
	Zusch	lags/Abzug	s Wand-F	Täche			1				-0,50 m ²
	Fenste	er-Fläche									-6,54 m²
	Tür-Fl										-4,43 m ²
West	1	13,01 m	3,20 m	AW 0,43n	n U=0.40		West	wai	rm /	26,67 m ²	22,38 m ²
		,	0,_0		., .,				ßen		,
	Ahzüc	e/Zuschläg	ne .		Zeichnu	na	P	arameter	Anz.	Einzelfl.	Gesamtfl.
	Erdrei		<u> </u>		ZCICITIU	ııg_	a =	2,00 m	1	-14,96 m ²	-14,96 m ²
	Liulei	GII			s c	h	c = h =	0,30 m 13,01 m	'	-14,30 111	-14,30 111
	ΔF 1 1	10/1,20m U	I_1 Q8						2	-1,32 m²	-2,64 m ²
	AF 1.1					2	-0,83 m ²	-1,65 m ²			
		lags/Abzug		Tächo	l					-0,03 111-	-14,96 m ²
	Fenst							-4,29 m ²			
Ost	1	1,00 m	3,20 m	AW 0,43n	0 LI=0 40		Ost	WO	rm /	3,20 m ²	
Ost	'	1,00 111	3,20 111	AVV 0,4311	11 0=0,40		Osi		ßen	3,20 m ²	3,20 111-
Erdanliegend <= 1,5m unter Erdreich	1	3,62 m	1,50 m	AW erda 0,41r	nliegend n U=0,44		rdanliegend <= 1,5m ter Erdreich	wai	rm / ßen	5,43 m²	5,43 m²
Erdanliegend > 1,5m unter Erdreich	1	3,62 m	0,50 m		nliegend n U=0,44	Er	rdanliegend 1,5m unter Erdreich		rm / ßen	1,81 m²	1,81 m²
Erdanliegend <= 1,5m	1	0,00 m	0,00 m	AW erda	nliegend	Er	rdanliegend	wai	rm /	14,96 m²	14,96 m²
unter Erdreich		.			n U=0,44		<= 1,5m	aul	ßen	.	•
				-,	-, -	unt	ter Erdreich				
	Abzüc	e/Zuschläg	ge		Zeichnu			arameter	Anz.	Einzelfl.	Gesamtfl.
	Trape				S S S S S S S S S S S S S S S S S S S	h	a = c = h =	0,30 m 2,00 m 13,01 m	1	14,96 m²	14,96 m²
	Zuschlags/Abzugs Wand-Fläche									14,96 m²	
Ziegeltrennwand	1	12,01 m	3,20 m	IW 0,33n	n U=0,51		InnenWand	wai unbehei Nebenra		52,02 m²	50,28 m ²
	Abzüc	e/Zuschläg	ge		Zeichnui	ng	P	arameter	Anz.	Einzelfl.	Gesamtfl.
		eck_Heizra				Ь	a = b =	4,18 m 3,25 m	1	13,59 m²	13,59 m²

Blatt 32

Baukörper-Dokumentation Gemeindeamt Willendorf

Projekt: **Gemeindeamt Willendorf** Baukörper: **Gemeindeamt Willendorf**

Bezeichnung	Anz.	Breite	Höhe		Bauteil	1	Ausrichtung	Zust	tand	Brutto-	Netto-	
										Fläche	Fläche	
Ziegeltrennwand		<u>je/Zuschläg</u>			Zeichnur	ng	P	arameter	Anz.	Einzelfl.	Gesamtfl.	
(Fortsetzung)		<u>5/2,04m U=</u>							1	-1,73 m²	-1,73 m ² 13,59 m ²	
		Zuschlags/Abzugs Wand-Fläche										
	Tür-Fl										-1,73 m ²	
Schutzraumwand	1	5,50 m	3,20 m	IW 0,32n	n U=2,47		InnenWand		ırm /	17,60 m ²	15,87 m²	
								unbehe	izter			
								Nebenra	aum			
	Abzüg	<u>je/Zuschläg</u>	ge		Zeichnur	ng	Р	arameter	Anz.	Einzelfl.	Gesamtfl.	
		5/2,04m U=	=2,84						1	-1,73 m ²	-1,73 m ²	
	Tür-Fl	äche									-1,73 m ²	
Grundplatte	1	13,30 m	9,76 m	FB 0,25n	n U=0,91 │ E		rdanliegend	wa	ırm /	162,48 m ²	162,48 m ²	
						<= 1,5n		außen				
							ter Erdreich					
	Abzüg	e/Zuschläg	ge		Zeichnur	ng	P	arameter	Anz.	Einzelfl.	Gesamtfl.	
	Recht	eck					a =	5,00 m	1	16,25 m ²	16,25 m ²	
					a		b =	3,25 m				
						b						
	Rechte	eck					a =	7,30 m	1	16,43 m ²	16,43 m ²	
					а		b =	2,25 m				
						b						
	Zusch	Täche				'			32,68 m ²			
Decke unter Loggia	1	7,30 m	2,25 m	DA 0,35m	1 U=0,95		Horizontal	wai	rm /	16,43 m ²	16,43 m ²	
			•	,	,			aul	ßen			

Beheiztes Volumen

Bezeichnung	Typ	Zeichnung		Parameter	Anzahl	Abzug	Zuschlag
· ·	Kubus	a	a = b = c =	13,30 m 3,20 m 9,76 m	1		415,39 m ³
Bürgermeister	Kubus	a	a = b = c =	5,00 m 3,20 m 3,25 m	1		52,00 m³
Windfang	Kubus	a	a = b = c =	7,30 m 3,20 m 2,25 m	1		52,56 m³
Summe							519,95 m ³

Beheizte Brutto-Geschoßfläche

Blatt 33

Baukörper-Dokumentation Gemeindeamt Willendorf

Projekt: **Gemeindeamt Willendorf** Baukörper: **Gemeindeamt Willendorf**

Bezeichnung	Anz.	Länge	Breite		Bauteil		Ausrichtung	Zustand		Brutto-	Netto-
										Fläche	Fläche
Grundplatte	1	13,30 m	9,76 m	FB 0,25n	n U=0,91	Eı	rdanliegend	wa	rm /	162,48 m ²	162,48 m ²
							<= 1,5m	au	ßen	·	
						unt	ter Erdreich				
	Abzüg	ge/Zuschläg	ge		Zeichnu	ng	P	arameter	Anz.	Einzelfl.	Gesamtfl.
	Recht	eck	-				a =	5,00 m	1	16,25 m ²	16,25 m ²
					a		b =	3,25 m			
						b					
					\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2					
	Recht	eck					a =	7,30 m	1	16,43 m ²	16,43 m²
					а		b =	2,25 m			
						a l					
					<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	b					
						a					
	Zusch	Zuschlags/Abzugs Wand-Fläche									32,68 m ²
Summe											162,48 m ²
Reduktion											0,00 m ²
BGF											162,48 m ²

Unbeheizter Nebenraum

Bezeichnung	Anz.	Breite	Höhe		Bauteil	Ausrichtung	Zus	tand	Brutto- Fläche	Netto- Fläche
Ziegeltrennwand	1	12,01 m	3,20 m	IW 0,33n	n U=0,51	InnenWand	unbehe		52,02 m ²	50,28 m ²
							Nebenr			
		ge/Zuschläg			Zeichnur	ng F	Parameter	Anz.	Einzelfl.	Gesamtfl.
	Recht	eck_Heizra	aum			a =	4,18 m	1	13,59 m ²	13,59 m ²
					a	b =	3,25 m			
						ь				
	IT 0.8	5/2.04m U:	-2 84					1	-1,73 m²	-1,73 m²
		lags/Abzu		Täche		1,70111	13,59 m ²			
	Tür-Fl									-1,73 m ²
Schutzraumwand	1	5,50 m	3,20 m	IW 0,32n	n U=2,47	InnenWand	wa	ırm /	17,60 m ²	15,87 m ²
			·				unbehe Nebenr			
	Abzüg	bzüge/Zuschläge				ng F	Parameter	Anz.	Einzelfl.	Gesamtfl.
		5/2,04m U:						1	-1,73 m ²	-1,73 m ²
	Tür-Fl	äche								-1,73 m ²